Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Med Chem ; 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-20243943

ABSTRACT

Metformin has seen use as an oral anti-hyperglycaemic drug since the late 1950s; however, following the release in 1998 of the findings of the 20-year United Kingdom Prospective Diabetes Study (UKPDS) metformin use rapidly increased and today is the first-choice anti-hyperglycaemic drug for patients with type 2 diabetes (T2D). Metformin is in daily use by an estimated 150 million people worldwide. Historically, the benefits of metformin as an anti-diabetic and cardiovascular-protective drug have been linked to effects in the liver, where it acts to inhibit gluconeogenesis and lipogenesis, as well as reducing insulin resistance and enhancing peripheral glucose utilization. However, direct protective effects on the endothelium and effects in the gut prior to metformin absorption are now recognized as being important. In the gut, metformin modulates the glucagon-like peptide-1 (GLP-1)- gut-brain axis as well as impacting the intestinal microbiota. As the apparent number of putative tissue and cellular targets for metformin has increased, so has interest in re-purposing metformin to treat other diseases that include polycystic ovary syndrome (PCOS), cancer, neurodegenerative diseases and COVID-19. Metformin is also being investigated as an anti-ageing drug. Of particular interest is whether metformin provides the same level of vascular protection in individuals other than those with T2D, including obese individuals with metabolic syndrome, or in the setting of vascular thromboinflammation caused by SARS-CoV-2. In this review we critically evaluate the literature to highlight clinical settings in which metformin might be therapeutically repurposed for the prevention and treatment of vascular disease.

2.
Metabolism ; 133: 155223, 2022 08.
Article in English | MEDLINE | ID: covidwho-1867490

ABSTRACT

Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Metformin , Animals , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Mammals/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL